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SUMMARY

Heritability analysis plays a central role in quantitative genetics to describe genetic contribution to human
complex traits and prioritize downstream analyses under large-scale phenotypes. Existing works largely
focus on modeling single phenotype and currently available multivariate phenotypic methods often suffer
from scaling and interpretation. In this article, motivated by understanding how genetic underpinning
impacts human brain variation, we develop an integrative Bayesian heritability analysis to jointly estimate
heritabilities for high-dimensional neuroimaging traits. To induce sparsity and incorporate brain anatom-
ical configuration, we impose hierarchical selection among both regional and local measurements based
on brain structural network and voxel dependence. We also use a nonparametric Dirichlet process mixture
model to realize grouping among single nucleotide polymorphism-associated phenotypic variations, pro-
viding biological plausibility. Through extensive simulations, we show the proposed method outperforms
existing ones in heritability estimation and heritable traits selection under various scenarios. We finally
apply the method to two large-scale imaging genetics datasets: the Alzheimer’s Disease Neuroimaging
Initiative and United Kingdom Biobank and show biologically meaningful results.

Keywords: ADNI; Bayesian hierarchical selection; Dirichlet process; Heritability; Imaging genetics; Ising model; UK
Biobank.

1. INTRODUCTION

The concept of heritability describes the aggregate of genetic signals within human complex traits and has
been used to prioritize downstream analyses when phenotypes are in large scale. To estimate heritability (or
narrow-sense heritability h2), twin or family studies was originally required with additive genetic variation
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2 Y. ZHAO AND OTHERS

captured by pedigree information (Almasy and Blangero, 1998). Alternatively, using unrelated individual
samples, genome-wide complex trait analysis (GCTA) was developed (Yang and others, 2010, 2011) to
calculate heritability based on all common single nucleotide polymorphisms (SNPs), and becomes popular
due to its flexibility and is widely applicable to the emerged large-scale data sources.

Neuroimaging traits on brain structure and function are among the most appealing yet not well-studied
phenotypes. Understanding how genetic underpinning impacts human brain variation will provide great
insight to elucidate etiological mechanisms in healthy or disease brain. Different from disease diagnosis or
other types of quantitative trait, brain measurements are often high-dimensional and correlated. However,
most of the previous analytical models (Yang and others, 2011; Ge and others, 2015) focused on univariate
phenotype without consideration of phenotypic correlation. More recently, a few methods have been
proposed to estimate heritability for multivariate traits (Ge and others, 2016; Luo and others, 2019).
Though these works showed promising results under low phenotypic dimensions, they are not feasible
under high-dimensional phenotypes due to the estimation of gigantic covariance matrix.

In addition, environmental factors and genetic effects combine in distinct ways to explain different brain
units (Fjell and others, 2015; Roshchupkin and others, 2016) and they separately play a dominant role in
different parts of the brain (Polderman and others, 2015). Though the underlying biological mechanism
is still under investigated, we expect the whole brain wise heritability should contain sparsity where a
range of environmentally driven brain areas are weakly and insignificantly heritable. Furthermore, since
we consider imaging measurements at a fine voxel-level, it is anticipated the variance explained by
SNPs are highly correlated among neighborhood voxels, making it spatially clustered and contiguous.
Motivated by these considerations, we develop a unified Bayesian nonparametric heritability analysis under
mixed effect model for large-scale neuroimaging phenotypes with simultaneous heritable traits selection.
Specifically, we impose sparsity for SNP-associated phenotypic variations and encourage grouping effect
for the nonzero SNP heritabilities under a nonparametric Dirichlet process (DP) mixture of inverse
gamma distributions. Though there is a broad literature in Bayesian variable selection, a large proportion
of the works focus on selection among high-dimensional covariates under fixed effect models (Zhang and
others, 2016; Teng and others, 2019). More recent years, selection of random effects or joint selection
of mixed effects receives growing attention under application of longitudinal and repeated measurements
data (Ibrahim and others, 2011; Cai and Bandyopadhyay, 2017). However, the problem of our interest is
fundamentally different from these works in the following two aspects: (i) we consider high-dimensional
outcomes and (ii) we focus more on estimating and selecting variance components but less on covariates.

Another unique feature for imaging phenotypes is their underlying biological structure. Besides the
spatial correlation among neighborhood voxels, brain connectivities among regions of interest (ROIs) are
also widespread metrics to capture regional dependence, where ROIs and voxels form a group structure.
Group or hierarchical selection as a popular concept for selecting structural covariates has been extensively
adopted in regression settings to achieve sparsity between and within feature groups (Zhang and others,
2014; Zhao and others, 2016). To achieve plausibly hierarchical sparsity among phenotypic heritability, we
introduce two nested sets of selection indicator at region level and voxel level, where selection indicators
are assigned to individual or grouped variance components. To incorporate region-wise connectivity and
voxel-wise dependence, we choose Ising or binary Markov random field priors (Li and Zhang, 2010) to
encourage coupling effect on selecting biologically dependent voxels/ROIs.

Our major contributions in this work are several-fold. First, we are among the very first to conduct
SNP-based heritability analysis for high-dimensional phenotypes under unrelated individuals. We apply
our method to study the integrative genetic contribution on large-scale brain phenotypes under both the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the United Kingdom (UK) biobank datasets.
Second, we impose hierarchical sparsity among region-level and voxel-level heritabilities which receives
less attention in literature but dramatically helps to improve estimation accuracy and computational effi-
ciency. Third, we incorporate structural connectivity among ROIs and spatial dependence among voxels
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Bayesian sparse heritability analysis 3

within the selection procedure by smoothing the selection indicators, leading to biological plausibility.
Lastly, we induce grouping effect among SNP-associated phenotypic variations using Bayesian nonpara-
metric to further improve detection power as well as reduce dimension. Eventually, the whole integrative
procedure will help us establish a biologically meaningful and interpretable heritability brain map, which
will offer a great potential for future genetically informative endophenotype construction.

The remainder of the article is organized as follows. In Section 2, we present the heritability analysis
and our extension to high-dimensional neuroimaging phenotypes. In Section 3, we present our method and
corresponding Markov chain Monte Carlo (MCMC) algorithm. We conduct simulation studies to assess
the performance of our method and competing ones in Section 4 followed by two real data applications
in Section 5. Finally, we conclude with a discussion in Section 6.

2. MODEL SPECIFICATION

We formulate the heritability analysis for an imaging genetics study via random effect models. Assuming
for each subject, we obtain neuroimaging phenotypes across S voxels and genetic variants over P whole
genome SNPs. At each voxel s, we have

Y (s) = WV (s) + e(s), s = 1, . . . , S. (2.1)

Here, Y (s) is a mean-centered N ×1 vector of phenotypes across N subjects at voxel s, and W = (wij)N×P

is the standardized genotype matrix summarized pairwisely under individual SNP data as wij = zij−fj√
2fj (1−fj )

,

with zij the number of copies of the reference allele of subject i and SNP j, and fj the reference allele
frequency for SNP j. The additive genetic effects are modeled as random effects denoted as V (s) which is a
vector of P SNP effects, and the corresponding residual effects are denoted as e(s).We also assume V (s) and
e(s) are independent across genetic loci and subjects, and V (s) ∼ N (0, Iτ 2

u (s)) and e(s) ∼ N (0, Iσ 2(s)),
respectively. Here, we focus our attention on the unrelated subject studies without the existence of a shared
random residual component. Hence, for each phenotype, τ 2

g (s) = Pτ 2
u (s) indicates the variance explained

by the additive genetic effects from the genome-wide common SNPs, and σ 2(s) denotes the variance from
subject-specific environment. For the ease of illustration, we do not adjust covariates (e.g., age, gender,
sex) at this moment, and we will discuss the general case in the later part.

Based on model (2.1), the phenotypic covariance matrix for neuroimaging voxel s becomes

Var{Y (s)} = τ 2
u (s)WWT + σ 2(s)I = τ 2

g (s)R + σ 2(s)I := V(τg , σ), (2.2)

where R = WWT /P is the empirical genetic relationship matrix (GRM) among subjects. To further
explore additive genetic heritability effect, we define the heritability for phenotypes s as the proportion

of genetic variation to the intersubject phenotypic variation: h(s) = τ2
g (s)

τ2
g (s)+σ2(s)

, which is nonnegative over

s = 1, . . . , S. Due to the topological configuration of human brain, the heritability estimates across brain
locations are highly correlated and their spatial dependence should be carefully modeled. In order to
construct a practically meaningful realization for h(·), our attentions land on the following four aspects.
First, due to the brain anatomical structure, the genetic impact capturing by τ 2

g (·) on neighborhood voxels
should be highly correlated, leading to localized grouping effect. Second, under such a fine phenotype
scale, it is biologically more meaningful to assume a similar magnitude of τ 2

g (·) upon correlated voxels
to reflect the topological smoothness of neurogenetic procedure. Third, besides voxel-wise correlation, it
is well known the existence of anatomical connections among ROIs. Given their interactions, phenotypes
belong to the connected brain regions are more likely to be coupling on their heritable status. Finally,
to improve statistical power and biological interpretability, it is meaningful to assume τ 2

g (·) over whole
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4 Y. ZHAO AND OTHERS

brain voxels contain sparsity with certain proportion of environmentally driven imaging traits impacted
marginally by the additive genetic effects. Particularly, given the atlas-based brain parcellations are genet-
ically noninformative, it is unlikely certain atlas-based ROI will be significantly associated with additive
genetic variations as a whole. Thus, our sparsity assumption is placed at both within and among ROI
levels. Given these considerations, we propose an integrative Bayesian model to simultaneously estimate
the heritabilities over whole brain phenotypes and identify heritable brain locations. It is worth noting that
to some extent, model (2.1) can be viewed as a imaging-on-scalar random effects regression. However,
different from most of the previous imaging-on-scalar models, our focus is on a more biologically plausi-
ble representation of the variance components rather than the association between imaging outcome and
predictors.

3. BAYESIAN SPARSE HERITABILITY ANALYSIS

3.1. Phenotype selection

Our goal is to model heritability function h(·) under brain structural driven sparsity and smoothness. To
impose sparsity on genetic effect, we introduce a latent indicator function γ (·) over brain with γ (s) ∈ {0, 1}
indicating the existence of significant genetic effect at voxel s. The total genetic variance τ 2

g (s) can be
further written as

τ 2
g (s) = γ (s) × η2(s); s = 1, . . . , S, (3.3)

where η2(s) represents the nonzero variance explained by common genetic variants once phenotype
measured at voxel s is heritable. In the case of γ (s) = 0, we have τ 2

g (s) = 0 indicating a negligible genetic
effect leading to h(s) = 0.

As mentioned previously, the brain anatomical architecture contains inherent hierarchies with ROIs
and voxels formed a nested group and within-group structure. Therefore, we first split whole brain latent
indicate set γ = {γ (1), . . . , γ (S)}T into region-level indicators C = (c1, . . . , cR)

T where cr describes the
heritable status of region r, and voxel-level selection indicators U = (U T

1 , . . . , U T
R ); Ur = (ur1, . . . , urSr )

T ,
where Sr is the total number of voxels in region r, and urg denotes the heritable status for voxel g within
region r. We summarize their relationship

γ = (M · C) ◦ U , (3.4)

where M = (msr) represents the mapping matrix from voxels to ROIs with msr = 1 when voxel s belongs
to region r, zero otherwise; and ◦ denotes the entry-wise product. Based on (3.4), we can locate each
neuroimaging phenotype s to voxel g within region r; and phenotype s will be excluded from the model
when at least one of cr and urg is zero.

From model formulation perspective, (3.3) and (3.4) essentially achieve the so-called “structured
sparsity” (Chen and others, 2016) by assuming the active components are from certain structure. Com-
putationally, incorporating group information into selection will improve stochastic signal searching. As
we can see from (3.4), at each iteration of the posterior algorithm, for elements within C that have been
sampled to zero, we can directly mark all their child-level phenotypes as insignificance. In other words, our
modeling strategy allows an intra-model dynamic screening procedure via the value of C during posterior
simulation. With R � S and the existence of sparsity, we are able to improve the parameter estimation
under less computation.

Another advantage of model formulation (3.4) is we can incorporate hierarchical brain structural
information in a more explicit way. Particularly, at region level, we extract a graph G1 = (V1, E1) based
on brain structural connectivity, where V1 = {1, . . . , R} is the set of ROIs and E1 = {(r1, r2) : r1, r2 ∈
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Bayesian sparse heritability analysis 5

V1, r1 �= r2, r1 ∼ r2} is the set of edges with r1 ∼ r2 indicating a connection in the structural network.
Similarly, we construct a graph over voxels within each region Gr2 = (Vr2, Er2); r = 1, . . . , R, with voxel
set Vr2 = {∑g<r Sg + 1, . . . ,

∑
g≤r Sg} and edge set Er2 = {(s1, s2) : s1, s2 ∈ Vr2, s1 �= s2, s1 ∼ s2}

with edges defined by between each voxel and its six nearest adjacent (top, bottom, left, right, front,
back) neighbors. Denote the symmetric binary adjacency matrix for G1 as A1, and those for Gr2 as Ar2;
r = 1, . . . , R. We then resort to Ising model, a binary-variable graphical model for latent indicators to
incorporate structural configuration among brain regions and voxels as

p(C) ∝ Ising(C, μ1, φ1, A1); p(Ur)
i.i.d∝ Ising(Ur , μ2, φ2, Ar2); r = 1, . . . , R, (3.5)

where vector V = (v1, . . . , vm) ∝ Ising(μ, φ, A) ∝ exp(μ
∑

vm + φ
∑

m

∑
m′ A(m, m′)I [vm = vm′ ]), with

I [·] the indicator function. In models (3.5), parameters μ = (μ1, μ2) control the sparsity of selection
indicators, i.e., how many regions or voxels will be treated as heritable and included in the model; and
parameters φ = (φ1, φ2) impact the smoothness of indicator values over graphs, i.e., how strong belief
we have to include or exclude the connected regions or voxels simultaneously. In the literature, a number
of different strategies can be used to determine the value of sparsity and smoothness parameters (Li and
Zhang, 2010; Huang and others, 2013). Here, we borrow the idea of Teng and others (2019) to first decide
a proper range of Ising parameters to avoid phase transition, and then conduct sensitivity analyses under
different choices of hyperparameters (see Sections S1 and S4 of the supplementary materials available
at Biostatistics online). When we ignore the brain structural information, all the elements of A1 and
Ar2, r = 1 . . . , R will become zero with the second term in the r.h.s of each model in (3.5) eliminated,
then the prior for C and U will become i.i.d Bernoulli distribution, a special case of Ising model without
any coupling effect.

3.2. Heritability estimation

After imposing sparsity, we further consider the estimation of genetic variance component τ 2
g (·) and

environmental variance component σ 2(·). From practical point of view, we assume each individual envi-
ronmental variance independently follows an Inverse Gamma prior σ 2(s) ∼ IG(a1, b1), s = 1, . . . , S.
In term of the genetic component τ 2

g (·), as shown in (3.3), the first component γ (·) identifies heritable
neuroimaging phenotypes with smoothing effect among selection indicators driven by brain structural
information given by (3.4) and (3.5). We are now focusing on the second component η2(·), which captures
the nonzero genetic effect; and as mentioned previously, it should be spatially clustered and contiguous
over brain.

We first assume at each brain location s, η2(s) ∼ F with F a predefined probability function. To fully
achieve a grouping effect by learning from the data, we assign a nonparametric DP prior on F

F ∼ DP(F0, α), (3.6)

with base measure F0 defining the expectation of the random probability on (0, +∞), and scalar parameter
α describing the variance. To conduct posterior inference, among different representations on DP , we
choose the infinite mixtures of point masses realization of F (Sethuraman, 1994), where two separate sets
of independent and identically distributed (i.i.d) random variables {π ′

k}∞
k=1 and {θk}∞

k=1 are introduced with

π ′
k | F0, α ∼ Beta(1, α); θk | F0, α ∼ F0; k = 1, . . . , ∞. (3.7)
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6 Y. ZHAO AND OTHERS

Fig. 1. A demostration of the Bayesian sparse heritability analysis (BSHA) modeling framework.

Then, the probability function F can be written as

F =
∞∑

k=1

πkδθk , with πk = π ′
k

k−1∏
h=1

(1 − π ′
h), (3.8)

where δθ is a probability measure concentrated at θ . Here, {θk}∞
k=1 is a sequence of independent draws from

F0 with its elements partitioning the natural number set into clusters with individually identical value;
and {πk}∞

k=1 is the weight parameter constructed via a stick-breaking distribution. With probability one,
F is a discrete distribution consisting of infinite number of point masses.

The discrete nature of DP induces grouping for the active genetic effect in a nonparametric way. As it
is clearly revealed in (3.7) and (3.8)—underweight {πk}∞

k=1, samples of η2(·) will be obtains directly from
discrete distribution F consisting of components {θk}∞

k=1, which drawn randomly from the base measure
F0 = IG(a0, b0). The scalar parameter α further controls the concentration of clustering, and we assign
a noninformative hyper-prior G(1, 1) to allow enough flexibility. With the increase of k , πk decreases
exponentially concentrating the sampling on a number of initial components. Therefore, each cluster in
our case has the identical value of η2(·), which facilitates our biological insight that contiguous brain
locations share similar genetic explanations. At the same time, with one cluster sharing the same genetic
effect, the posterior computation is also reduced since we ultimately estimate η2(·) for each cluster instead
of individual phenotype.

Overall, our method successfully realizes integrative heritability analysis for large-scale neuroimaging
traits with simultaneous sparse group selection of heritable phenotypes, smoothness over genetic effect
and incorporation of hierarchical brain structural information. We name our method Bayesian sparse
heritability analysis (BSHA) with a demonstration in Figure 1.

3.3. Posterior inference

We develop MCMC algorithm to conduct posterior inference for the proposed BSHA. For the ease of
computational allocation, we first choose a value K to cover the upper limit of cluster number on η2(s)
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under DP . As mentioned previously, the stick-breaking weighted format makes the sampling concentrate
at initial clusters, and we can start with large K value and run MCMC multiple times to find a proper range.
For each η2(s), we introduce a latent indicator t(s) ∈ {1, . . . , K} as its cluster index, where t(s) should
follow a multinomial (MN) distribution with K categories under weight π = (π1, . . . , πK). Given imaging
and genetics data, the joint conditional posterior distribution for unknown parameter/hyperparameter set
� = (

η2(·), σ 2(·), t(·), π , C, U ) follows

π
(
� | Y (·), R

) ∝ π(Y (·), R | �)π(η2(·) | t(·), π)π(σ 2(·))π(t(·))π(π)π(C, U ),

under which Metropolis–Hastings (MH) and Gibbs are used for posterior computation following:

Step 0:

Assign random initials to each element of �;

Step 1:

For s = 1, . . . , S, if γ (s) = 0, update σ 2(s) from IG(a1 +N/2, b1 +Y ′(s)Y (s)/2); else if γ (s) = 1, sample
a proposal σ̃ 2(s) based on log(σ̃ 2(s)) = log(σ 2(s)) + ε with ε a mean zero Normal distribution, then

calculate Rσ = exp
[
− 1

2 Y ′{V(τg , σ̃ )−1 − V(τg , σ)−1}Y − b1

σ̃2
+ b1

σ2

] |V(τg ,σ)|
1
2

|V(τg ,̃σ)|
1
2

· (
σ̃2

σ2

)a1 , with a probability

min(1, Rσ ) to accept σ̃ 2(s).

Step 2:

For s = 1, . . . , S, if γ (s) = 0, sample η2(s) from IG(a0, b0); else if γ (s) = 1, denote η2
k =

{η2(s); z(s) = k} as the unified genetic variance for group k , k = 1, . . . , K . Sample a proposal η̃2
k

based on log(η̃2
k) = log(η2

k) + ε ′ with ε ′ a mean zero Normal distribution, then calculate Rη =
exp

[∑
s I [z(s) = k]( − 1

2 Y ′{V(η̃k , σ)−1 − V(ηk , σ)−1}Y ) − b0

η̃2
k

+ b0
η2

k

]
· |V(η,σ)|

∑
s I [z(s)=k]

2

|V(η,̃σ)|
∑

s I [z(s)=k]
2

· ( η̃2
k

η2
k

)a0 , with a

probability min(1, Rτ ) to accept τ̃ 2
k . Based on the accepted η2(s), we can calculate τ 2

g (s) based on (3.3).

Step 3:

For s = 1, . . . , S, if γ (s) = 0, sample z(s) from MN(π1, . . . , πK); else if γ (s) = 1, sample z(s) from

MN(q1, . . . , qK) with qk = πk exp(− 1
2 Y ′{V(τk ,σ)−1}Y )|V(τk ,σ)|

1
2∑K

h=1 πh exp(− 1
2 Y ′{V(τh ,σ)−1}Y )|V(τk ,σ)|

1
2

.

Step 4:

For k = 1, . . . , K −1 sample π
′
k from Beta(1+dk , α +∑

j>k dj) where dk = ∑
s I [z(s) = k], and πK = 1.

We then have πk = π
′
k

∏
h<k(1 − π

′
h).

Step 5:

For r = 1, . . . , R, define l1(cr) := exp(μ1ck +φ1
∑

r′ A1(r, r′)I [cr = cr′ ]) ∏m
s=1

[
exp(− 1

2 Y ′{V(τgcr , σ)−1}
Y ) | V(τgcr , σ) | 1

2
]mrs . Then sample cr from Bern(

l1(1)

l1(1)+l1(0)
).

Step 6:

For r = 1, . . . , R; s = 1, . . . , Sr , define l2(urs) := exp(μ2urs + φ2
∑

s′ Ar2(s, s′)I [urs =
urs′ ]) exp(− 1

2 Y ′{V(τgurs, σ)−1}Y ) | V(τgurs, σ) | 1
2 . Then sample urs from Bern(

l2(1)

l2(1)+l2(0)
).
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8 Y. ZHAO AND OTHERS

During implementation, we repeat steps 1–6 iteratively. Eventually, our goal of interest is to estimate
brain voxel-wise heritability. So at each iteration of MCMC, we calculate h(s) based on posterior samples
of σ 2(s) and τ 2

g (s) for s = 1, . . . , S, and use posterior median as suggested by Xu and others (2015) to
obtain heritability estimates which are sparse with zero indicating an heritably inactive brain phenotype.

3.4. Adjusting covariates

When there are nongenetic covariates XN×Q, e.g. age, gender, needed to be adjusted, model (2.1) becomes
voxel-specific mixed effect model by adding XN×Q as fixed effects. To remove the design variables, we
adopt a strategy which is similar to that considered by Ge and others (2016). Specifically, we introduce
P = I − X(XT X)−1XT which is a symmetric and idempotent matrix with rank N − Q. Matrix P can be
further decomposed as P = TT T where T is a (N − Q) × N matrix satisfying TTT = I and TXT = 0.
Eventually, by projecting data via matrix T, we can remove the fixed effect term with the model becomes
TY (s) = TWV (s)+ Te(s), s = 1, . . . , S. Therefore, once we update the phenotype at each brain voxel to
Ỹ (s) = TY (s) and GRM to G̃ = TGTT , the heritability estimate will follow the same procedure as that
for model (2.1).

4. SIMULATION STUDIES

We conduct simulation studies to evaluate the finite sample performance of the proposed method in
heritability estimation and heritable phenotypes selection. To mimic real data, we randomly sample 1000
GRM from the ADNI database (ADNI 1/Go/2 phases), and consider a 3D cubic as phenotypes with the
total voxel number 64 000(40 × 40 × 40). To construct structural information, we partition the cubic
into 64 equally sized adjacent regions with 1000 voxels in each one, and generate a scale-free network
within the regions. In terms of heritabilities, we generate σ 2 ∼ IG(5, 10) for a low variance case and
σ 2 ∼ IG(0.5, 1) for a high variance one. For genetic component, we consider the following scenarios for
the locations and values.

Scenario 1: We set four regions to be significantly heritable based on network configuration. Within
each of them, we randomly assign 100 spatially contiguous voxels to be true signals and denote their index
set as R1. We then generate τ 2

g (R1) ∼ IG(5, 10) or τ 2
g (R1) ∼ IG(0.5, 1) for two variance cases to keep a

balanced scale for the two variance components.
Scenario 2:We randomly set four regions to be significantly heritable without consideration of network

configuration.Within each them, following Scenario 1, we randomly assign 100 spatially contiguous voxels
to be true signals with their index set R2. We then generate τ 2

g (R2) ∼ IG(5, 10) or τ 2
g (R2) ∼ IG(0.5, 1)

for two variance cases.
Scenario 3: We randomly set eight pieces of significantly heritable areas based on network configura-

tion. Within each of them, we randomly assign 50 spatially contiguous voxels to be true signals with their
index set R3. We then generate σ 2

g (R3) ∼ IG(5, 10) (or τ 2
g (R3) ∼ IG(0.5, 1)).

Scenario 4: We follow the signal pattern in scenario 1 to construct R1. Differently, we directly set
heritability h(R1) = 0.7 for an identically heritable effect within significant voxels, which results in
τ 2

g (R1) not following any distribution.
Scenario 5: We follow the signal pattern in scenario 2 to construct R2, and directly set h(R2) = 0.7

for the significant heritability.
Scenario 6: We follow the signal pattern in scenario 3 to construct R3, and directly set h(R3) = 0.7

for the significant heritability.
To implement BSHA, we assign noninformative priors by using ak = bk = 1 (k = 0, 1) and

μ1 = μ2 = 0. In terms of smoothness hyperparameters, we set φ1 = φ2 = 1 after sensitivity analyses.
Since BSHA represents the very first for high-dimensional heritability analysis under unrelated subject
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Bayesian sparse heritability analysis 9

study, we apply three existing univariate phenotypic analysis: GCTA, massively expedited genome-wide
heritability analysis (MEGHA) (Ge and others, 2015), moment matching method for SNP-based heri-
tability estimation (MMHE) (Ge and others, 2017) on the data via pipelines provided by their authors.
These three approaches work in a similar fashion by providing a point estimate of heritability and the
corresponding p-value. To further assess different components of model construction in BSHA, we also
consider three different variations of BSHA as competitors: (i) we replace the Ising priors on selection
indicator sets by i.i.d Bernoulli priors with parameter 0.5 and denote the method as BSHA1; (ii) we
replace the DP prior on F by directly assigning F = IG(a0, b0) and denote the method as BSHA2;
and (iii) we remove the regional sparsity assumption by only inserting voxel-level selection indicator and
denote the method as BSHA3. For each scenario under both low and high variance cases, we generate
100 Monte Carlo datasets. The tuning parameter settings for BSHA1, 2, 3 follow those for BSHA, and we
conduct MCMC with random initials for 5000 iterations with 2000 burn-in for the Bayesian approaches
where the posterior convergence is checked by trace plots as well as Gelman–Rubin method (Gelman
and others, 1992) on the average estimated heritability over heritable traits, number of selected heritable
traits, and logarithm posterior likelihood. We calculate root mean square error (RMSE) for h(s) to assess
the heritability estimation, and use sensitivity and specificity to quantify heritable phenotype selection.
All the results are summarized in Table 1.

Overall, our proposed BSHA outperforms the competing methods in heritability estimation and herita-
ble phenotypes identification in almost all the settings. Specifically, under low variance scenarios, BSHA
achieves a considerably better performance particularly in comparison with existing approaches. This
reassures the necessity to consider the joint effect among phenotypes. When variance increases, though
the performance of all the methods shows deterioration, BSHA stays as the winner in estimation and
selection. We further study the strength of each single component in our model. Among three BSHA
variations, BSHA1 disables the property to incorporate structural information compared to BSHA. As we
can see from Table 1, when true signals are concentrated, regional network G1 contributes little to posterior
inference indicated by similar performance for BSHA1 between scenarios 1 and 2 (4 and 5), highly likely
due to the domination of hierarchical sparsity. However, when signals get scattered, a failure to incor-
porate network information will lead to significantly worse results showed by the comparison between
BSHA1 and BSHA in scenarios 3 and 6. The advantage of nonparameter setting is demonstrated by the
performance of BSHA2 which is comparable to that of BSHA when we generate true signals based on
parametric model assumption (scenarios 1–3) but gets deteriorated when the assumption no longer holds.
Lastly, the hierarchical sparsity construction as assessed by comparing BSHA3 and BSHA significantly
impacts the result in our current simulation settings. Without regional sparsity, BSHA3 suffers with the
worst selection and estimation performance among BSHA and its variations.

Of note, we also conduct additional simulations to investigate the impact of sample size on the perfor-
mance of different methods and show the robustness of our method in small sample sizes. See Section S2
of the supplementary material available at Biostatistics online.

5. DATA APPLICATIONS

5.1. ADNI

We focus on the baseline ADNI1 data in our analysis (www.adni-info.org) to illustrate our method in a
disease sample. For data quality control, 745 Caucasian subjects are considered after removing the ones
with sex check failure, more than 10% missing SNP, and outliers. To construct GRM, we first remove
SNPs with (i) more than 5% missing values, (ii) minor allele frequency smaller than 5%, and (iii) Hardy–
Weinberg equilibrium p-value < 1e−6. A total of 421 823 SNPs are left eventually, and we calculate
GRM among subject. In terms of phenotypes, the raw magnetic resonance imaging (MRI) data for each
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10 Y. ZHAO AND OTHERS

Table 1. Simulation results: RMSE (average root mean square error) for heritability estimation,
sensitivity (Sens), and specificity (Spec) for heritable phenotype selection under different scenarios
and variances. The Monte Carlo standard deviation for RMSE is included in the parentheses.

Low variance High variance

Scenario Method RMSE Sens Spec RMSE Sens Spec

1 GCTA 0.184 (7.051e−04) 0.882 0.860 0.188 (7.222e−04) 0.605 0.860
MEGHA 0.125 (5.932e−04) 0.744 0.950 0.126 (7.348e−04) 0.625 0.950
MMHE 0.092 (5.724e−04) 0.833 0.897 0.092 (9.802e−04) 0.686 0.897
BSHA1 0.029 (1.326e−03) 0.908 0.998 0.029 (1.816e−03) 0.815 0.997
BSHA2 0.022 (1.402e−03) 0.904 0.999 0.023 (1.514e−03) 0.831 0.999
BSHA3 0.050 (1.363e−03) 0.908 0.996 0.050 (2.737e−03) 0.735 0.996
BSHA 0.024 (1.463e−03) 0.928 0.999 0.024 (1.954e−03) 0.828 0.999

2 GCTA 0.184 (6.276e−04) 0.881 0.860 0.187 (6.771e−04) 0.605 0.861
MEGHA 0.125 (6.353e−04) 0.740 0.950 0.126 (5.546e−04) 0.623 0.950
MMHE 0.092 (5.892e−04) 0.828 0.897 0.092 (1.343e−03) 0.684 0.897
BSHA1 0.029 (1.347e−03) 0.883 0.997 0.029 (1.463e−03) 0.818 0.997
BSHA2 0.022 (9.905e−04) 0.904 0.999 0.023 (1.924e−03) 0.855 0.999
BSHA3 0.051 (1.283e−03) 0.911 0.997 0.050 (2.945e−03) 0.753 0.996
BSHA 0.024 (1.066e−03) 0.927 0.999 0.024 (1.888e−03) 0.851 0.999

3 GCTA 0.184 (9.772e−04) 0.882 0.860 0.190 (7.866e−04) 0.601 0.860
MEGHA 0.125 (5.791e−04) 0.739 0.950 0.127 (5.543e−04) 0.614 0.950
MMHE 0.091 (4.304e−04) 0.832 0.897 0.092 (1.413e−03) 0.678 0.897
BSHA1 0.043 (1.422e−03) 0.833 0.994 0.044 (1.494e−03) 0.672 0.993
BSHA2 0.034 (1.058e−03) 0.881 0.999 0.034 (1.697e−03) 0.759 0.998
BSHA3 0.050 (1.033e−03) 0.867 0.996 0.050 (2.594e−03) 0.774 0.995
BSHA 0.030 (2.496e−04) 0.904 0.998 0.034 (1.427e−03) 0.798 0.997

4 GCTA 0.184 (5.633e−04) 0.881 0.860 0.189 (1.435e−03) 0.607 0.860
MEGHA 0.124 (5.961e−04) 0.737 0.950 0.126 (6.291e−04) 0.611 0.950
MMHE 0.092 (4.537e−03) 0.831 0.897 0.092 (6.832e−03) 0.678 0.897
BSHA1 0.029 (3.104e−03) 0.885 0.997 0.029 (5.742e−03) 0.811 0.996
BSHA2 0.025 (1.997e−03) 0.858 0.999 0.025 (5.564e−03) 0.719 0.999
BSHA3 0.050 (3.684e−03) 0.888 0.997 0.050 (4.646e−03) 0.702 0.995
BSHA 0.023 (2.062e−03) 0.912 0.999 0.023 (4.953e−03) 0.830 0.999

5 GCTA 0.184 (6.285e−04) 0.892 0.860 0.189 (1.217e−03) 0.591 0.860
MEGHA 0.125 (5.354e−04) 0.751 0.950 0.127 (4.504e−04) 0.604 0.950
MMHE 0.091 (3.078e−03) 0.843 0.897 0.092 (6.848e−03) 0.666 0.897
BSHA1 0.030 (2.332e−03) 0.881 0.997 0.030 (4.913e−03) 0.781 0.996
BSHA2 0.027 (1.631e−03) 0.897 0.999 0.028 (4.686e−03) 0.717 0.999
BSHA3 0.050 (2.937e−03) 0.904 0.997 0.050 (4.643e−03) 0.702 0.995
BSHA 0.024 (1.584e−03) 0.922 0.999 0.024 (5.325e−03) 0.801 0.999

6 GCTA 0.184 (7.298e−04) 0.883 0.860 0.190 (9.152e−04) 0.616 0.860
MEGHA 0.126 (6.026e−04) 0.739 0.950 0.127 (5.564e−04) 0.618 0.950
MMHE 0.092 (2.015e−04) 0.831 0.897 0.092 (5.021e−03) 0.682 0.897
BSHA1 0.042 (1.412e−03) 0.764 0.994 0.043 (2.406e−03) 0.668 0.993
BSHA2 0.046 (1.415e−03) 0.774 0.999 0.046 (3.099e−03) 0.689 0.998
BSHA3 0.050 (2.263e−03) 0.878 0.996 0.050 (4.152e−03) 0.678 0.995
BSHA 0.031 (2.334e−03) 0.907 0.998 0.036 (3.045e−03) 0.792 0.997
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Bayesian sparse heritability analysis 11

subject were collected through 1.5 T MRI scanners and then preprocessed by standard steps (Shen and
Davatzikos, 2004). A detailed dataset description, image acquisition, and preprocessing steps can be found
in Section S3.1 of the supplementary material available at Biostatistics online. To quantify the voxel-wise
brain volumetric difference, we generate RAVENS maps using deformation field (Davatzikos and others,
2001) for whole brain tissue. Simultaneously, we label 90 ROIs based on Automated Anatomical Labeling
(AAL)-90 atlas, and directly adopt the connectivity information via a previous study onAlzheimers patients
(Kuceyeski and others, 2013). The total number of voxels covered by gray matter and sub-cortical regions
from AAL is 144 999. We finally include gender, age, and the first five principle components of GRM as
fixed effects. We apply the proposed BSHA and competing ones GCTA and MMHE with implementation
settings following those in the simulations.

Our main goal is to prioritize the heritable brain phenotypes and quantify the genetic effect on those
brain locations, and we summarize the heritability heatmaps for the significantly heritable brain locations
under different methods in Figure 2. It is straightforward to draw the following conclusions from the figure:
first, there is a general consistency between BSHA and the other methods in the locations with strongest
genetic effects. As shown in the sagitall view, we can see a rough match in the heritably significant
regions between BSHA and MMHE/GCTA, which ensures our method works properly. Second, the
heritable phenotypes identified by BSHA are spatially much more clustered and contiguous, revealing its
biologically appealing property; while the ones selected by MMHE/GCTA are more scattered, lacking
meaningful interpretation. Third, MMHE/GCTA have identified a large amount of isolated signals, i.e.,
heritable phenotypes at a single or very small number of voxels with no other heritable ones nearby. Since
our brain imaging measurements are at a very fine scale, such a big interruption at single voxel level makes
little biological sense. By using BSHA, we extensively avoid the potential false positives.

We further summarize the total number of selected voxels and the average of corresponding heritabilities
under each ROI in Table 2. Here, we list ROIs (a full list of region names is in Table 3 of the supplementary
material available at Biostatistics online) with their phenotypes selected by at least one of the three methods,
along with the number of heritable phenotypes (Nvoxel) and their average heritability (h̄2). Based on Table 2,
we confirm a general agreement among the three methods in identified brain areas. In terms of specific
heritable brain regions, as shown in Table 2, BSHA helps detect a number of ROIs which have not been
caught by the other two methods. For instance, the volume of middle frontal gyrus (MFG.R) is shown
to be highly heritable among schizophrenia patients and siblings in previous studies (Hu and others,
2013), and there is also significant activation in MFG.R under working memory-related task which is
strongly heritable (Blokland and others, 2008). Fusiform gyrus (FFG.L, FFG.R) is a well-known brain
area involved in the processing of both faces and words, and its measurements are also shown to be highly
heritable in multiple previous studies on different populations (Chouinard-Decorte and others, 2014).

5.2. UK biobank

The UK Biobank project (https://www.ukbiobank.ac.uk/) is a large prospective cohort study for middle-
and older-aged adults from the United Kingdom. Here, we focus on individuals of middle or elderly
ages (age range 40–69) with British ancestry. To prepare the data, we construct genetic GRM used
the imputed SNP data with a quantity control step followed that in Zhao and others (2019). As
for the imaging traits, we download the fractional anisotropy (FA) and mean diffusivity (MD) maps
from the UK Biobank website and process the FA and MD according to the TBSS-Enigma pipeline
(http://enigma.ini.usc.edu/protocols/dti-protocols/#dtiproj). We then skeletonize the registered FA and
MD images by projecting the ENIGMA skeleton onto them and further resample the FA and MD skele-
tons to 2 × 2 × 2 mm3. We use 46 white matter tracts in brains two lateral hemispheres labeled by
the ENIGMA-DTI pipeline (Jahanshad and others, 2013), which is widely applied to measure the vari-
ation of microstructural integrity. The ROIs location can be found in Figure 3. We do not incorporate
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12 Y. ZHAO AND OTHERS

Fig. 2. ADNI data analysis results: estimated heritabilities under GCTA, MMHE, and BSHA over the whole brain.
Only significant ones are represented by heatmaps from slides −20 to −6 in sagitall view, slides −13 to −27 in
coronal view, and slides 48 to 34 in axial view with a 2-slide skipping.
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Bayesian sparse heritability analysis 13

Fig. 3. UK Biobank data analysis results: the top row gives the orientation and location of white matter tracts in the
brain; and Rows 2–4 and 5–7 display the estimated heritabilities under GCTA, GCTA (only significant voxels), and
BSHA methods for FA and MD skeletons, respectively.
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14 Y. ZHAO AND OTHERS

Table 2. ADNI data analysis results: number of significantly heritable phenotypes (Nvoxel) and their
average heritability (h̄2) for all the ROIs whose phenotypes selected by at least one of the three methods.

GCTA MMHE BSHA GCTA MMHE BSHA

Nvoxel h̄2 Nvoxel h̄2 Nvoxel h̄2 Nvoxel h̄2 Nvoxel h̄2 Nvoxel h̄2

MTG.R 16 0.963 17 0.742 86 0.861 ORBinf.R 1 0.994 2 0.834 0 —
SFGdor.L 20 0.961 26 0.836 57 0.838 ROL.L 1 0.986 2 0.709 0 —
MFG.R 7 0.963 3 0.848 42 0.836 ACG.R 2 0.938 2 0.808 0 —
FFG.R 13 0.961 4 0.718 35 0.849 PHG.L 3 0.966 2 0.868 0 —
SFGmed.L 9 0.893 31 0.820 34 0.853 CAL.R 2 0.943 2 0.836 0 —
FFG.L 6 0.966 1 0.740 32 0.789 LING.R 1 0.994 2 0.676 0 —
PoCG.R 30 0.933 28 0.803 31 0.820 CAU.L 0 — 2 0.886 0 —
MFG.L 14 0.944 3 0.808 30 0.844 ITG.R 12 0.962 2 0.912 0 —
ITG.L 7 0.901 5 0.859 25 0.834 ORBinf.L 9 0.942 1 0.930 0 —
PreCG.L 13 0.945 30 0.784 24 0.863 OLF.L 1 0.861 1 0.908 0 —
ANG.L 4 0.959 9 0.796 17 0.892 ORBsupmed.L 0 — 1 0.635 0 —
SFGmed.R 9 0.971 4 0.835 16 0.912 PCG.L 0 — 1 0.667 0 —
PCUN.R 10 0.930 11 0.747 16 0.784 HIP.R 7 0.973 1 0.816 0 —
MOG.L 36 0.962 24 0.798 13 0.832 SOG.R 2 0.964 1 0.985 0 —
IPL.L 8 0.934 8 0.815 12 0.887 SMG.L 1 0.956 1 0.719 0 —
PreCG.R 27 0.957 84 0.813 10 0.909 MTG.L 4 0.944 1 0.971 0 —
PCUN.L 21 0.954 12 0.848 10 0.822 PCL.L 11 0.951 0 — 0 —
STG.L 0 — 3 0.876 10 0.783 PCL.R 11 0.943 0 — 0 —
SFGdor.R 10 0.963 13 0.812 0 — IFGoperc.L 8 0.960 0 — 0 —
SPG.L 20 0.883 20 0.782 0 — IFGoperc.R 4 0.950 0 — 0 —
ANG.R 5 0.954 16 0.840 0 — IFGtriang.L 4 0.959 0 — 0 —
ROL.R 6 0.949 13 0.773 0 — SMA.L 4 0.980 0 — 0 —
PoCG.L 15 0.963 13 0.736 0 — ACG.L 4 0.969 0 — 0 —
SPG.R 9 0.955 12 0.829 0 — CUN.L 4 0.960 0 — 0 —
INS.L 2 0.974 11 0.776 0 — ORBmid.L 3 0.929 0 — 0 —
REC.L 4 0.966 10 0.782 0 — PCG.R 3 0.969 0 — 0 —
INS.R 4 0.958 9 0.812 0 — LING.L 3 0.979 0 — 0 —
PHG.R 6 0.966 9 0.833 0 — SMG.R 3 0.971 0 — 0 —
THA.L 4 0.978 9 0.822 0 — PUT.R 3 0.962 0 — 0 —
MOG.R 15 0.957 8 0.718 0 — IOG.R 2 0.970 0 — 0 —
IPL.R 8 0.965 8 0.816 0 — IFGtriang.R 1 0.982 0 — 0 —
DCG.R 6 0.959 4 0.801 0 — OLF.R 1 0.983 0 — 0 —
CAL.L 2 0.966 4 0.833 0 — ORBsupmed.R 1 0.978 0 — 0 —
SMA.R 4 0.973 3 0.909 0 — REC.R 1 0.984 0 — 0 —
THA.R 1 0.949 3 0.906 0 — HIP.L 1 0.993 0 — 0 —
STG.R 7 0.938 3 0.679 0 — CUN.R 1 0.990 0 — 0 —
TPOsup.R 0 — 3 0.704 0 — SOG.L 1 0.973 0 — 0 —
ORBmid.R 1 0.888 2 0.865 0 — TPOsup.L 1 0.970 0 — 0 —

regional connectivity in this case and consider the six adjacent neighbors for voxel-wise dependency.
More detailed dataset description, image acquisition and preprocessing steps are included in Section S3.2
of the supplementary material available at Biostatistics online. We finally merge the SNP GRM, imaging
phenotypes and nongenetic covariates (age, gender, and the first 40 principle components) together and
obtain 16 432 subjects each with 34 646 voxel-level imaging phenotypes for both FA and MD.
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We apply BSHA to conduct integrative heritability analysis for each brain phenotype map, and as a
comparison, we also perform GCTA on individual measures for both FA and MD. The final results are
provided in Figure 3, where we plot the heatmaps of the estimated heritability over whole brain skeleton
under GCTA, those over significant voxels under GCTA, and those over BSHA. As we can see, similar to
the ADNI data, the following conclusions still hold—there is a general result consistency between GCTA
and BSHA, but heritable estimates identified by BSHA are spatially much more clustered, contiguous,
and sparse. We further summarize the number and average estimated heritability over heritable voxels
in each ROI in Tables 4 and 5 provided in the supplementary material available at Biostatistics online.
Among the top identified ROIs by BSHA for both FA and MD skeletons, most of them are consistent with
previous literature. For instance, the Corpus Callosum (BCC, GCC, and SCC) connects the left and right
cerebral hemispheres, enabling communications between them and is the largest white matter structure
in the human brain (Luders and others, 2010); and the high heritability of FA and MD at the Corpus
Callosum, of MD value at corona radiata (PCR, ACR, and SCR), the low (zero) FA heritabilities of the
FX and the SCT and the low MD heritabilities of CST, IFO, CGH, FX/ST are also consistent with the
results in Zhao and others (2019) and Lee and others (2015).

6. DISCUSSION

In this article, we fill the gap in existing literature by developing a unified Bayesian heritability analysis for
high-dimensional phenotypes with biological structure. Under application to study SNPs effect on large
scale brain imaging traits among unrelated subjects, we impose hierarchical selection among phenotypic
heritabilities. In addition, our model incorporates the structural connectivity among ROIs and spatial
dependence among voxels, leading to smoothness of heritable status by biological information. To further
improve the robustness and interpretability of our result, we adopt a nonparametric Bayesian prior to model
genetic effect, providing desired grouping effect with reduced computation. We show the superiority of
our model construction in simulations and UK biobank application.

Computation is always a challenge for MCMC-based Bayesian method particularly in the presence
of high-dimensional data. In our method, the novel model construction allows us to dramatically reduce
the computation cost from several layers. The hierarchical sparsity enables to exclude a large number
of inactive phenotypes at region level within MCMC and refines the selection at actual scale. By doing
so, we considerably scale up the posterior computation and improve the mixing of MCMC. Additional,
we use DP model to induce grouping effect among significant heritabilities, which is another source to
reduce computation cost compared with parametric model that updates each heritability parameter one at
a time. In practice, to mitigate the computational complexity coming from the inverse of V matrix which
needs to be updated at each MCMC interaction, we could predetermine V−1 which can be transferred to
a function of h under a wide range of domain values (say 0.2–0.9 with an accuracy 0.0001), and directly
import V−1 when the posterior sample of τ 2

g and σ 2 fit its support value. By doing so, we only need less
than 4 h for ADNI data and less than 2 h for UK biobank applications (Matlab implementation, 2.4 GHz
CPU, 64GB Memory, Windows System).

In our model formation, prior (3.3) is equivalent to the well-known point mass mixture prior on
τ 2

g (s) to achieve selection. An interesting extension is to replace it with computationally more efficient
continuous shrinkage prior. Currently, most of the works on this area focus on regression models, and
more recently, structural based Bayesian shrinkage regression models are also proposed to incorporate
prior network information (Chang and others, 2018). In our case, we could borrow the idea of structural-
driven shrinkage regression but develop relevant prior model on variance component with assumption
that inactive genetic effects are small but not exactly zero. Compared with our current model, this new
direction may easily solve the computational issue and avoid the potential phase transition problem from
Ising prior. Some other extensions of our current analysis include to consider different phenotypes like the

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/advance-article/doi/10.1093/biostatistics/kxaa035/5908767 by U

niv of Southern C
alifornia user on 26 O

ctober 2020

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa035#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa035#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa035#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa035#supplementary-data


16 Y. ZHAO AND OTHERS

ones summarized from other imaging modalities (functional MRI or positron emission tomography). It is
also possible though not readily applicable to conduct heritability analysis for brain functional/structural
network.

7. SOFTWARE

Software in the form of MATLAB code is available at Github: https://github.com/yizekaren/Bayesian-
sparse-heritability-analysis-with-high-dimensional-neuroimaging-phenotypes.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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